Pointwise a posteriori error estimates for monotone semi-linear equations
نویسندگان
چکیده
We derive upper and lower a posteriori estimates for the maximum norm error in finite element solutions of monotone semi-linear equations. The estimates hold for Lagrange elements of any fixed order, non-smooth nonlinearities, and take numerical integration into account. The proof hinges on constructing continuous barrier functions by correcting the discrete solution appropriately, and then applying the continuous maximum principle; no geometric mesh constraints are thus required. Numerical experiments illustrate reliability and efficiency properties of the corresponding estimators and investigate the performance of the resulting adaptive algorithms in terms of the polynomial order and quadrature.
منابع مشابه
Pointwise a Posteriori Error Estimates for the Stokes Equations in Polyhedral Domains
Abstract. We derive pointwise a posteriori residual-based error estimates for finite element solutions to the Stokes equations in polyhedral domains. The estimates relies on the regularity of the of Stokes equations and provide an upper bound for the pointwise error in the velocity field on polyhedral domains. Whereas the estimates provide upper bounds for the pointwise error in the gradient of...
متن کاملL2 and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces
Surface Finite Element Methods (SFEM) are widely used to solve surface partial differential equations arising in applications including crystal growth, fluid mechanics and computer graphics. A posteriori error estimators are computable measures of the error and are used to implement adaptive mesh refinement. Previous studies of a posteriori error estimation in SFEM have mainly focused on boundi...
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملA Posteriori Error Analysis of Parameterized Linear Systems Using Spectral Methods
We develop computable a posteriori error estimates for the pointwise evaluation of linear functionals of a solution to a parameterized linear system of equations. These error estimates are based on a variational analysis applied to polynomial spectral methods for forward and adjoint problems. We also use this error estimate to define an improved linear functional and we prove that this improved...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 104 شماره
صفحات -
تاریخ انتشار 2006